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Abstract— This paper gives the theoretical control small-signal 

description of perturbed Keplarian satellite orbit. Starting from a 

pair of second-order differential equations obtained previously 

based on Newton’s law of motion, a control state space description 

is formulated. It is shown that the application of Laplace 

transform to the system, input, and output matrices leads the 

transfer function of satellite orbit. Consideration of small signal 

variation in the input and output matrices gives the control 

characterization of the satellite orbit. 
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I. INTRODUCTION  

Natural or artificial body moving around a celestial body 
such as planets and stars as depicted in Fig. 1, [1], are well-
studied. Many subtle effects such as earth’s oblateness, solar and 
lunar effects, solar radiation pressure perturb earth satellite 
orbits, invalidating the simple orbits predicted by two-body 
gravity equations [2], [3]. Therefore, a study of nonlinear model 
of geostationary communication satellite will provide an insight 
to the orbital parameters which ensure stability under these 
subtle effects. 

In the seminar approach presented in [4], or its variants [5], 
[6], the emphasis is on small eccentricities and inclinations. This 
has made [4]’s widely embraced closed form solution of the 
earth’s artificial satellite problem to be a significant part of 
SGP4. SGP4 features continuous availability of matching orbital 
elements. SGP4 is an analytical orbit model for Low-Earth 
orbiting satellites that is widely used for the propagation of 
North American Aerospace Defense Command (NORAD) two-
line elements. Two-line elements may hence be generated 
completely independent of NORAD. It is observed that their use 
as exclusive source of orbital information simplifies the 
operations concept and reduces mission costs through the 
extensive use of existing low-cost mission support software. 

However, the understanding noted in [7], that is, proceeding 
by averaging is not the unique possibility in obtaining analytical 
solutions by general perturbations, and the use of intermediary 
orbits like useful approximate solutions of the problem of 
artificial satellite theory (AST) is proposed. 

In the study of artificial satellites, perturbations are 
considered to be limited to the effects of the second zonal 
harmonic [5].  

 

Fig. 1 A system of three geostationary communication satellites provides 
nearly worldwide coverage [1]. 

The idea of AST is developed further such that AST 
intermediaries are obtained by reorganizing the terms of the 
disturbing function, a simple expedient that may be preceded by 
the simultaneous addition and subtraction to the geo-potential of 
some smartly-chosen supplementary terms. Reference [8] shows 
that after reorganization, a part of the Hamiltonian that admits a 
separable generating function is taken as the (zero order) 
integrable problem whereas the rest of the disturbing function is 
taken as the perturbation, which may be further neglected. 
Hence, common intermediaries are formulated in the same 
variables as the original satellite problem —traditionally in 
spherical variables. 

Therefore, it is demonstrated in [8] that the intermediary 
solution provides an efficient alternative for the analytical 
propagation of low earth orbits in a range determined by non-
impact orbits with eccentricities below one tenth. 

In this work, it is considered that if the system operates 
around an equilibrium point and if the signals involved are small 
signals, then it is possible to approximate the non-linear system 
by a linear system. Such a linear system is equivalent to the 
nonlinear system considered within a limited operating range. 



Journal of Communications Technology, Electronics and Computer Science, Issue 13, 2017 

ISSN 2457-905X 

 

19 

 

Such a linearized model (linear, time-invariant model) is very 
important in control aspect of satellite orbit. 

The remaining part of this work is organized as follows. 
Discussion on control systems features in section II. The 
formulation of control small-signal expression is presented in 
section III. Section IV provides discussion with respect to the 
work presented in this paper. The conclusion about this work is 
drawn in section V. 

II. CONTROL SYSTEM 

A. Classical Control System  

At a simplified level, the systems or plants that can be 
considered by using classical control ideas are linear and time 
invariant, and have a single input and a single output [9], [10]. 
The primary aim of the designer using classical control design 
methods is to stabilize a plant, whereas secondary aims may 
involve obtaining a certain transient response, bandwidth, 
disturbance rejection, steady state error, and robustness to plant 
variations or uncertainties. The designer’s methods are a 
combination of analytical ones (e. g., Laplace transform, Routh 
test), graphical ones (e.g., Nyquist plots, Nichols charts), and a 
good deal of empirically based knowl- edge (e. g., a certain class 
of compensator works satisfactorily for a certain class of plant). 
For higher-order systems, multiple-input systems, or systems 
that do not possess the properties usually assumed in the 
classical control approach, the de- signer’s ingenuity is generally 
the limiting factor in achieving a satisfactory design. 

B. Modern Control System 

Two of the main aims of modern, as opposed to classical, 
control are to de-empiricise control system design and to present 
solutions to a much wider class of control problems than 
classical control can tackle. One of the major ways modern 
control sets out to achieve these aims is by providing an array of 
analytical design procedures that facilitate the design task. 

Modern control theory is contrasted with conventional 
control theory in that the former is applicable to multiple-input-
multiple-output systems, which may be linear or nonlinear, time 
invariant or time varying, while the latter is applicable only to 
linear time-invariant single-input-single-output systems. Also, 
modern control theory is essentially a time-do- main approach, 
while conventional control theory is a complex frequency-
domain approach [11].  

The state variables of a dynamic system are the variables 
making up the smallest set of variables that determine the state 

of the dynamic system. If at least n variables 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛  

are needed to completely describe the behavior of a 
dynamic system (so that once the input is given for 𝑡 ≥ 𝑡𝑜 
to and the initial state at 𝑡 = 𝑡𝑜 is specified, the future state 
of the system is completely determined), then such n 
variables are a set of state variables. 

 State-space representation is the design method employed 
in this work. State-space analysis is concerned with three types 
of variables that are involved in the modeling of dynamic 
systems: input variables, out- put variables, and state variables. 
The state-space representation for a given system is not unique, 

except that the number of state variables is the same for any of 
the different state-space representations of the same system [11]. 

The dynamic system must involve elements that memorize 
the values of the input for 𝑡 ≥ 𝑡1 . Since integrators in a 
continuous-time control system serve as memory devices, the 
outputs of such integrators can be considered as the variables 
that define the internal state of the dynamic system. Thus the 
outputs of integrators serve as state variables. The number of 
state variables to completely define the dynamics of the system 
is equal to the number of integrators involved in the system [11]. 

III. SMALL-SIGNAL CONSIDERATON OF SATELLITE ORBIT 

Starting from Newton’s law of motion, the satellite motion 
can be described using the following second order differential 
equations [12]. 

                      
𝑑2𝑟𝑜

𝑑𝑡2 − 𝑟𝑜 (
𝑑𝛽𝑜

𝑑𝑡
)

2

−
𝑓𝑟𝑜

𝑚
= −

𝜇

𝑟𝑜
2                      (1) 

               𝑟𝑜 (
𝑑2𝛽𝑜

𝑑𝑡2 ) + 2 (
𝑑𝑟𝑜

𝑑𝑡
) (

𝑑𝛽𝑜

𝑑𝑡
) −

𝑓𝛽𝑜

𝑚𝑟𝑜
= 0                 (2) 

Rearranging (1) and (2) we get 

                        
𝑑2𝑟𝑜

𝑑𝑡2 = 𝑟𝑜 (
𝑑𝛽𝑜

𝑑𝑡
)

2

+
𝑓𝑟𝑜

𝑚
−

𝜇

𝑟𝑜
2          (3) 

             (
𝑑2𝛽𝑜

𝑑𝑡2 ) = −2 (
𝑑𝑟𝑜

𝑑𝑡
) (

𝑑𝛽𝑜

𝑑𝑡
) (

1

𝑟𝑜
) +

𝑓𝛽𝑜

𝑚𝑟𝑜
2          (4) 

                             
𝐺𝑀𝐸𝑚

𝑅𝑜
2 = 𝑚𝑅𝑜𝜔

2           (5) 

                           𝐺𝑀𝐸 = 𝜇 = 𝜔2𝑅𝑜
3           (6) 

The expected geostationary orbit is described as 

                                     𝑟𝑜 = 𝑅𝑜            (7) 

                                  𝛽𝑜 = 𝛽 + 𝜔𝑡                                    (8) 

Where 𝑟𝑜 is the actual radius of orbit from the centre of the 
earth, G is universal gravitational constant, ω is angular velocity, 
𝑅𝑜(constant) is the desired radius of orbit  𝛽𝑜 is sweep angle, m 
is mass of satellite, ME is mass of earth, 𝑓𝑟𝑜  and 𝑓𝛽𝑜

are the 

satellite propulsion in 𝑟𝑜 and 𝛽𝑜 directions. 

Assuming 𝑥1, 𝑥2, 𝑥3, 𝑥4  are state variables defined as 
follows: 

                                   𝑥1 = 𝑟𝑜 − 𝑅𝑜           (9) 

                                      𝑥2 =
𝑑𝑟𝑜

𝑑𝑡
          (10) 

                            𝑥3 = 𝛽𝑜 − (𝛽 + 𝜔𝑡)         (11) 

                                𝑥4 =
𝑑𝛽𝑜

𝑑𝑡
− 𝜔         (12) 

Consider the differential with respect to time of (1), (2), (3) 
and (4) as follow 

                           
𝑑𝑥1

𝑑𝑡
= 𝑥̇1 =

𝑑𝑟𝑜

𝑑𝑡
= 𝑥2         (13)     

 
𝑑𝑥2

𝑑𝑡
= 𝑥̇2 =

𝑑2𝑟𝑜

𝑑𝑡2 = (𝑥1 + 𝑅𝑜)(𝑥4 + 𝜔)2 −
𝜇

(𝑥1+𝑅𝑂)2
+

𝑓𝑟

𝑚
     

                                                                                          (14) 
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𝑑𝑥2

𝑑𝑡
=

(𝑥1+𝑅𝑜)3(𝑥4+𝜔)2−𝜇

(𝑥1+𝑅𝑜)2
+

𝑓𝑟

𝑚
         (15)  

Using Binomial theorem, (15) becomes 

                
𝑑𝑥2

𝑑𝑡
=

(𝑅𝑜
3+3𝑥1𝑅𝑜

2)(𝜔2+2𝜔𝑥4)−𝜔2𝑅𝑜
3

𝑅𝑜
2+2𝑅𝑜𝑥1

        (16) 

                   
𝑑𝑥2

𝑑𝑡
= 3𝜔2 + 2𝑅𝑜𝜔𝑥4 +

𝑓𝑟𝑜

𝑚
         (17) 

                    
𝑑𝑥3

𝑑𝑡
= 𝑥̇3 =

𝑑𝛽𝑜

𝑑𝑡
− 𝜔 = 𝑥4                           (18) 

              
𝑑𝑥4

𝑑𝑡
= 𝑥̇4 = −

2

𝑟𝑜
(

𝑑𝑟𝑜

𝑑𝑡
) (

𝑑𝛽𝑜

𝑑𝑡
) +

𝑓𝛽𝑜

𝑚𝑟𝑜
             (19) 

             
𝑑𝑥4

𝑑𝑡
= 𝑥̇4 = −2

𝑥2(𝑥4+𝜔)

(𝑥1+𝑅𝑜)
+

𝑓𝛽𝑜

𝑚(𝑥1+𝑅𝑜)
            (20) 

                  𝑥̇4 =
−2𝜔𝑥2(1+

𝑥4
𝜔

)

𝑅𝑜(1+
𝑥1
𝑅𝑜

)
+

𝑓𝛽𝑜

𝑚𝑅𝑜(1+
𝑥1
𝑅𝑜

)
                   (21) 

                         𝑥̇4 =
−2𝜔𝑥2

𝑅𝑜
+

𝑓𝛽𝑜

𝑚𝑅𝑜
         (22) 

           𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛             (23) 

         𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛            (24) 

Where, 𝐴  is the coefficient matrix of the geostationary 
satellite orbit, 𝐵 is the driving matrix, 𝐶 is the output matrix, and 
𝐷 is the transmission matrix. 

If the system perturbation vector is defined as [𝑓𝑟𝑜 , 𝑓𝛽𝑜
]
𝑇

, 

then (13), (17), (18) and (22) can be expressed in the state 
variable format of (23). 

[
 
 
 
𝑥1̇(𝑡)

𝑥2̇(𝑡)

𝑥3̇(𝑡)

𝑥4̇(𝑡)]
 
 
 

=

[
 
 
 0
3𝜔2

0
0

1
0
0

−
2𝜔

𝑅𝑜

0
0
0
0

0
2𝑅𝑜𝜔

1
0 ]

 
 
 

[

𝑥1
𝑥2

𝑥3

𝑥4

] +

[
 
 
 
0 0
1

𝑚

0
0

0
0
1

𝑚𝑅𝑜]
 
 
 

[
𝑈1(𝑡)

𝑈2(𝑡)
]            (25) 

 

[𝑋̇(𝑡)] =

[
 
 
 
 0
3𝜔2

0
0

1
0
0

−
2𝜔

𝑅𝑜

0
0
0
0

0
2𝑅𝑜𝜔

1
0

]
 
 
 
 

[𝑋(𝑡)]

+

[
 
 
 
 
0 0
1

𝑚
0
0

0
0
1

𝑚𝑅𝑜]
 
 
 
 

[𝑈(𝑡)] 

                              (26) 

From (26) 

                 𝐴 =

[
 
 
 0
3𝜔2

0
0

1
0
0

−
2𝜔

𝑅𝑜

0
0
0
0

0
2𝑅𝑜𝜔

1
0 ]

 
 
 

               (27) 

                                    𝐵 =

[
 
 
 
0 0
1

𝑚

0
0

0
0
1

𝑚𝑅𝑜]
 
 
 

                                 (28) 

                                      𝑦 = 𝑥3                                              (29) 

                           𝐶 = [0 0 1 0]                                    (30) 

Equation (26) is solved by using Laplace transform method as 
follows. From (23), i.e  

                      𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)         (31) 

Taking the Laplace transform of (31), we get 

                𝑠𝑋(𝑠) − 𝑥(0) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠)                         (32) 

Where x(0) is the initial condition 

               (𝑠𝐼 − 𝐴)𝑋(𝑠) = 𝑥(0) + 𝐵𝑈(𝑠)                             (33) 

where I is a unit matrix of the same order as A. Without 
introducing I, (S-A) is not defined, for s is a scalar and A is an 
𝑛 × 𝑛 matrix. The pre-multiplication of (sI-A)-1 to (33) gives 

   𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1𝑥(0) + (𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠)        (34) 

This response consists of the zero-input response (the response 
due to nonzero x(0)) and the zero-state response (the response 
due to nonzero U(t)). Substituting X(s) into the Laplace 
transform of (24), we obtain  

𝑌(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝑥(0) + [𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷]𝑈(𝑠) 

                            (35) 

From (35), D = 0 and also x(0) = 0. Therefore, we can write that 

                        𝑌(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠)         (36) 

However, 

          (𝑠𝐼 − 𝐴) = [

𝑠
−3𝜔2

0
0

−1
𝑠
0
2𝜔

𝑅𝑜

0
0
𝑠
0

0
−2𝑅𝑜𝜔

−1
𝑠

]        (37) 

The determinant det of (𝑠𝐼 − 𝐴) is 

                   𝑑𝑒𝑡((𝑠𝐼 − 𝐴)) = 𝑠4 + 𝜔2𝑠2         (38) 

Also the adjoin, Adj of (𝑠𝐼 − 𝐴) is written as 

𝐴𝑑𝑗 =

[
 
 
 
 
 
(𝑠3 + 4𝜔2𝑠) (−𝑠2) (0) (2𝑅𝑜𝜔𝑠)

(3𝜔2𝑠2) (𝑠3) (0) (2𝑅𝑜𝜔𝑠2)

(−
6𝜔3

𝑅𝑜
)

(−
6𝜔3𝑠

𝑅𝑜
)

(−
2𝜔𝑠

𝑅𝑜
) (𝑠3 + 𝜔2𝑠) −(𝑠2 + 3𝜔2)

(−
2𝜔𝑠2

𝑅𝑜
) (0) (𝑠3 − 3𝜔2𝑠) ]

 
 
 
 
 

       

                                                                                           (39) 
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Let 

           a𝑑𝑗(𝑠𝐼 − 𝐴) = 𝑁 = [

𝑁11 𝑁12 𝑁13 𝑁14

𝑁21

𝑁31

𝑁41

𝑁22

𝑁32

𝑁42

𝑁23 𝑁24

𝑁33 𝑁34

𝑁43 𝑁44

]          (40) 

Also 

                                      𝐵 = [

𝐵11

𝐵21

𝐵31

𝐵41

𝐵12

𝐵22

𝐵32

𝐵42

]                              (41) 

However 

                                  (𝑠𝐼 − 𝐴)−1 =
𝑎𝑑𝑗(𝑠𝐼−𝐴)

𝑑𝑒𝑡(𝑠𝐼−𝐴)
                        (42) 

Therefore, (36) becomes 

                  𝑌(𝑠) = 𝐶
1

𝑑𝑒𝑡(𝑠𝐼−𝐴)
𝑎𝑑𝑗(𝑠𝐼 − 𝐴)𝐵𝑈(𝑠)               (43) 

 

    𝑎𝑑𝑗(𝑠𝐼 − 𝐴)𝐵 = [

𝑁11 𝑁12 𝑁13 𝑁14

𝑁21

𝑁31

𝑁41

𝑁22

𝑁32

𝑁42

𝑁23 𝑁24

𝑁33 𝑁34

𝑁43 𝑁44

] [

𝐵11

𝐵21

𝐵31

𝐵41

𝐵12

𝐵22

𝐵32

𝐵42

] 

                                                                                               (44) 

                     𝑎𝑑𝑗(𝑠𝐼 − 𝐴)𝐵 = [

𝑁12𝐵21 𝑁14𝐵42

𝑁22𝐵21 𝑁24𝐵42

𝑁32𝐵21

𝑁42𝐵21

𝑁34𝐵42

𝑁44𝐵42

]              (45) 

𝐶[𝑎𝑑𝑗(𝑠𝐼 − 𝐴)𝐵] = 𝐶𝑁𝐵

= [0 0 1 0] [

𝑁12𝐵21 𝑁14𝐵42

𝑁22𝐵21 𝑁24𝐵42

𝑁32𝐵21

𝑁42𝐵21

𝑁34𝐵42

𝑁44𝐵42

]

= [𝑁32𝐵21 𝑁34𝐵42] 

                                                                                               (46) 

                       𝑁32𝐵21 = (−
2𝜔𝑠

𝑅𝑜
) (

1

𝑚
) = −

2𝜔𝑠

𝑚𝑅𝑜
                   (47) 

               𝑁34𝐵42 = −(𝑠2 + 3𝜔2) (
1

𝑚𝑅𝑜
) =

−(𝑠2+3𝜔2)

𝑚𝑅𝑜
         (48) 

Therefore, (43) becomes                                                     

               𝑌(𝑠) =
1

𝑑𝑒𝑡(𝑠𝐼−𝐴)
[𝑁32𝐵21 𝑁34𝐵42]𝑈(𝑠)              (49) 

                 𝑌(𝑠) =
1

𝑠4+𝜔2𝑠2 [−
2𝜔𝑠

𝑚𝑅𝑜

−(𝑠2+3𝜔2)

𝑚𝑅𝑜
] 𝑈(𝑠)           (50) 

 

            𝑌(𝑠) = [
−2𝜔𝑠

𝑚𝑅𝑜(𝑠4+𝜔2𝑠2)

−(𝑠2+3𝜔2)

𝑚𝑅𝑜(𝑠4+𝜔2𝑠2)
] 𝑈(𝑠)             (51) 

 

                    𝑌(𝑠) = [
−

2𝜔𝑠

𝑚𝑅𝑜

𝑠2(𝑠2+𝜔2)

−
(𝑠2+3𝜔2)

𝑚𝑅𝑜

𝑠2(𝑠2+𝜔2)
] 𝑈(𝑠)                 (52) 

Considering the small variations in X(S), Y(S), and U(S), (52) 
becomes 

               ∆𝑌(𝑠) = [
−𝑗

2𝜔2

𝑚𝑅𝑜

𝑠2(𝑠2+𝜔2)

−
2𝜔2

𝑚𝑅𝑜

𝑠2(𝑠2+𝜔2)
] ∆𝑈(𝑠)                 (53) 

∆𝑌(𝑠) = [(−𝑗
2

𝑚𝑅𝑜
) (

𝜔2

𝑠2(𝑠2+𝜔2)
) (−

2

𝑚𝑅𝑜
) (

𝜔2

𝑠2(𝑠2+𝜔2)
)] ∆𝑈(𝑠)           

                                                                                               (54) 

The expression in (54) is the small-signal representation of a 
satellite in geostationary orbit. Further information, such as 
transfer function of satellite orbit can be obtained. 

IV. DISCUSSION 

Representing the governing differential equations by first 
order state equations makes it possible to directly solve the state 
equations in time, using standard numerical methods and 
efficient algorithms on today's fast digital computers. Since the 
state equations are always of first order irrespective of the 
system's order or the number of inputs and outputs, the greatest 
advantage of state-space methods is that they do not formally 
distinguish between single-input, single-output systems and 
multivariable systems, allowing efficient design and analysis of 
multivariable systems with the same ease as for single variable 
systems. Furthermore, using state-space methods it is possible 
to directly design and analyze nonlinear satellite system which 
is utterly impossible using classical methods. When dealing with 
linear satellite systems, state-space methods result in repetitive 
linear algebraic manipulations (such as matrix multiplication, 
inversion, solution of a linear matrix equation, etc.), which are 
easily programmed on a digital computer. 

From the small-signal expression of (54), the satellite orbit 
transfer function which is a two-element matrix, can be seen to 
be dependent on the satellite mass, orbital radius 𝑅𝑜, and angular 
velocity ω.  

The sweep angle   𝛽𝑜 , mass of earth ME, and satellite 
propulsion 𝑓𝑟𝑜  and 𝑓𝛽𝑜

 in 𝑟𝑜  and 𝛽𝑜  directions do not directly 

reflect in the small-signal expression. 

V. CONCLUSION 

In conclusion, the control small-signal nature of Keplarian 
satellite orbit has been theoretically investigated in terms of 
characteristic equation. The obtained small-signal expression 
represents the nonlinear description of the satellite orbit. This 
linearized expression will provide a significant opportunity for 
further critical stability analysis of the satellite orbit in 
subsequent work. 
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